Home
Class 12
MATHS
In any triangle ABC, the least valeu of ...

In any triangle ABC, the least valeu of `(sin^2A+sinA+1)/(sinA)is (A) 3 (B) sqrt(3)` (C) 9 (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, show that : 2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)

In any triangle ABC sum (sin^2A+sinA+1)/sinA is always greater than or equal

In an isosceles right angled triangle ABC, /_B=90^0, AD is the median then (sin/_BAD)/(sin/_CAD) is (A) 1/sqrt(2) (B) sqrt(2) (C) 1 (D) none of these

If in a Delta ABC, /_ C=90^@, then the maximum value of sinA sinB is

The value of 2sinA cos^(3)A -2sin^(3)A cosA is

In any triangle A B C , prove that following: \ \ a^2sin(B-C)=(b^2-c^2)sinA

In any triangle, the minimum value of r_1r_2r_3//r^3 is equal to (a) 1 (b) 9 (c) 27 (d) none of these

In a triangle ABC, if (sqrt3-1)a = 2b, A = 3B , then /_C is

In any DeltaABC , prove that a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0

If in a triangle ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then