Home
Class 12
MATHS
In a /\ABC, b^2+c^2 =1999 a^2, then (cot...

In a `/_\ABC, b^2+c^2 =1999 a^2`, then `(cotB+cotC)/(cotA)=` (A) 1/1999 (B) 1/999 (C) 999 (D) 1999

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC , if b^2 + c^2 = 3a^2 , then cotB + cotC-cotA is equal to

In DeltaABC, a^2+c^2=2002b^2 then (cotA+cotC)/(cotB) is equal to

In A B C , if b^2+c^2=2a^2, then value of (cotA)/(cotB+cotC) is 1/2 (b) 3/2 (c) 5/2 (d) 5/2

If ^n C_0/2- ^n C_1/3+^n C_2/4-…….+(-1)^n ^n C_n/(n+2) = 1/(1999x2000) then n = (A) 1998 (B) 1999 (C) 2000 (D) 2001

In a Delta ABC if 9 (a^2 + b^2) = 17c^2 then the value of the (cot A + cot B) / cotC is

In a Delta ABC if 9 (a^2 + b^2) = 17c^2 then the value of the (cot A + cot B) / cotC is

If f,g,h are the internal bisectors of a /_\ ABC then 1/f cos (A/2)+ 1/g cos (B/2) +1/h cos (C/2)= (A) 1/a+1/b-1/c (B) 1/a-1/b+1/c (C) 1/a+1/b+1/c (D) none of these

In DeltaABC , prove that: (b+c-a)(cotB/2+cotC/2)=2acotA/2

In DeltaABC , a,b,c are in A.P., prove that: cotA/2.cotC/2=3

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0