Home
Class 12
MATHS
If f,g,h are the internal bisectors of a...

If f,g,h are the internal bisectors of a `/_\ ABC` then `1/f cos (A/2)+ 1/g cos (B/2) +1/h cos (C/2)=` (A) `1/a+1/b-1/c` (B) `1/a-1/b+1/c` (C) `1/a+1/b+1/c` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f,g,h are internal bisectoirs of the angles of a triangle ABC, show that 1/f cos, A/2+ 1/g cos, B/2+1/h cos, C/2= 1/a+1/b+1/c

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these

|(1,cos(A-B), cos(A-C)),(cos(B-A), 1, cos(B-C)),(cos(C-A), cos(C-B), 1)| (A) 0 (B) 1 (C) cosAcosBcosC (D) none of these

If cos A=mcosB ,\ t h e ncot((A+B)/2)cot((B-A)/2) adot\ (m-1)/(m+1) b. (m+2)/(m-2) c. (m+1)/(m-1) d. none of these

Prove that (cos C + cos A)/(c + a) + (cos B)/(b) = (1)/(b)

If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc) , then k is equal to

If sin^(-1)x-cos^(-1)x=pi/6 , then x= (a) 1/2 (b) (sqrt(3))/2 (c) -1/2 (d) none of these

If A,B,C,D are the angles of a quadrilateral, prove that "cos"1/2(A+B)+"cos"1/2(C+D)=0 .

The triangle ABC is inscribed in a circle of unit radius. If A : B : C = 1 : 2 : 4, then cos2A+cos2B+cos2C= (a) 1/2 (b) -1 (c) -1/2 (d) -1/3

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-1,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :