Home
Class 12
MATHS
If Delta represents the area of acute an...

If ```Delta` represents the area of acute angled triangle ABC, then `sqrt(a^2b^2-4Delta^2)+sqrt(b^2c^2-4Delta^2)+sqrt(c^2a^2-4Delta^2)=` (a) `a^2+b^2+c^2` (b) `(a^2+b^2+c^2)/2` (c) `a bcosC+bc cosA+c acosB` (d) `a bsinC+b csinA+c asinB`

Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta represents the area of acute angled triangle ABC sqrt(a^(2)b^(2) -4Delta^(2)) + sqrt(b^(2) c^(2) -4Delta^(2)) + sqrt(c^(2) a^(2) -4Delta^(2))=

In a triangle ABC , (a^2-b^2-c^2) tan A +(a^2-b^2+c^2) tan B is equal to

In any triangle A B C , prove that: Delta=(b^2+c^2-a^2)/(4cotA) .

If Delta = a^(2)-(b-c)^(2), Delta is the area of the Delta ABC then tan A = ?

For any triangle ABC, prove that (b^2-c^2)/(a^2)sin2A+(c^2-a^2)/(b^2)sin2B+(a^2-b^2)/(c^2)sin2C=0

For any triangle ABC, prove that a(bcosC-ccosB)=b^2-c^2

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In a triangle ABC, a^2cos^2A=b^2+c^2 then triangle is

If A, B and C are interior angles of a triangle ABC, then show that "sin"((B+C)/2)=cosA/2 .

The angles of a triangle ABC are in A.P and b:c = sqrt(3) : sqrt(2) find angle A