Home
Class 12
MATHS
In a triangle ABC the length of the bise...

In a triangle ABC the length of the bisector of angle A is :
(i) `2(bc)/(b+c) sin.(A)/(2)`
(ii) `2(bc)/(b+c) cos.(A)/(2)`
(iii) `(abc)/(2R(b+c)) cosec.(A)/(2)`
(iv) `(4A)/(b+c) cosec.(A)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, a^2cos^2A=b^2+c^2 then triangle is

In a triangle ABC with usual notation b cosec B=a , then value of (b + c)/(r+ R) is

In a triangle ABC, prove that (b + c)/(a) le cosec.(A)/(2)

In a triangle Delta ABC , prove the following : 2 abc cos.(A)/(2) cos.(B)/(2) cos.(C )/(2) = (a+b+c)Delta

In any triangle ABC, show that : 2a cos (B/2) cos (C/2) = (a+b+c) sin (A/2)

In any triangle ABC, show that : 2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)

In the triangle ABC , in which C is the right angle, prove that : sin 2 A =(2 ab )/(c ^(2)) , cos 2 A= ( b ^(2) - a ^(2))/( c ^(2)), sin ""(A)/(2) = sqrt ((c -b)/( 2c)) , cos ""(A)/(2)= sqrt ((c +b)/( 2c)).

In a triangle ! ABC, a^2cos^2A=b^2+c^2 then

In any Delta ABC, ((b-c)/(a))cos^(2)((A)/(2))+((c-a)/(b))cos ^(2)((b )/(2))+((a-b)/(2 ))cos ^(2)((C)/(2)) is equal

In any triangle , prove that ((b-c)/( b+c)) cot ""(A)/(2) +((b+c)/(b-c)) tan ""(A)/(2) = 2 cosec (B-C)