Home
Class 12
MATHS
For any triangle ABC, prove that(cosA)/a...

For any triangle ABC, prove that`(cosA)/a+(cosB)/b+(cosC)/c=(a^2+b^2+c^2)/(2a b c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any Delta A B C , prove that: (cos A)/a+(cos B)/b+(cos C)/c=(a^2+b^2+c^2)/(2a b c)

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

For any triangle ABC, prove that a(bcosC-ccosB)=b^2-c^2

For any triangle ABC, prove that (b+c)cos((B+C)/2)=acos((B-C)/2)

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

For any triangle ABC, prove that acosA+bcosB+c cosC = 2asinBsinC

For any triangle ABC, prove that (a-b)/c=(sin((A-B)/2))/(cos(C/2))

For any triangle ABC, prove that a(cosC-cos B)\ =\ 2\ (b - c)\ cos^2(A/2)

In any Delta A B C , prove that: 2(bc cosA+cacosB+a bcosC)=a^2+b^2+c^2