Home
Class 12
MATHS
In a triangle ABC, 2B= A + C and b^(2) =...

In a triangle ABC, 2B= A + C and `b^(2) = ac`, then `(a(a+b+c))/(3bc)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

In a triangle ABC, if (sqrt3-1)a = 2b, A = 3B , then /_C is

In a triangle ABC, a^2cos^2A=b^2+c^2 then triangle is

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : tan^2B - sec^2 B+2

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

In triangle ABC, b^(2) sin 2C + c^(2) sin 2B = 2bc where b = 20, c = 21 , then inradius =

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.