Home
Class 12
MATHS
Area bounded by the curve y=sqrt(sin[x]+...

Area bounded by the curve `y=sqrt(sin[x]+[sinx]),(w h e r e[dot]` is greatest integer function), lines `x=1a d nx=pi/2a d bt h exa xi si s :` (A) (sin1)`pi/2-1` (B) `sqrt(sin2.)(pi/2-1)` (C) `sqrt(cos1.)(pi/2-1)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Area bounded by the curve y=sqrt(sin[x]+[sinx]),(w h e r e[dot] is greatest integer function), lines x=1a d nx=pi/2a d bt h exa xi si s : pi/2-1 (B) sqrt(sin2.)(pi/2-1) (C) sqrt(cos1.)(pi/2-1) (D) none of these

Find the area bounded by the curve y=sin^(-1)x and the line x=0,|y|=pi/2dot

Find the area bounded by the curve y=sin^(-1)x and the line x=0,|y|=pi/2dot

The number of solutions of [sinx+cosx]=3+[-sinx]+[-cosx](w h e r e[] denotes the greatest integer function), x in [0,2pi] , is 0 (b) 4 (c) infinite (d) 1

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these

int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi

The area bounded by the curve y=|cos^(-1)(sinx)|-|sin^(-1)(cosx)| and axis from (3pi)/(2)lex le 2pi

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is (a) {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these