Home
Class 12
MATHS
In any triangle ABC prove that cot(A/2)+...

In any triangle ABC prove that `cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, prove that (cot(A/2)+cot(B/2)+cot(C/2))/(cotA+cotB+cot(C))=((a+b+c)^2)/(a^2+b^2+c^2)

In a triangle ABC if cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a and cot(C/2)cot(A/2)=b then 1/(s-a)+1/(s-b)+1/(s-c)=

In any triangle A B C , prove that: (b-c)cot (A/2)+(c-a)cot (B/2)+(a-b)cot (C/2) =0

In a triangle ABC prove that r_1r_2r_3=r^3 cot^2 (A/2). cot^2 (B/2).cot^2(C/2)

In any DeltaABC , prove that cot (A/2) + cot (B/2) + cot (C/2) = (a+b+c)/(b+c-a) cot (A/2)

In any triangle A B C , prove that: (b-c)cot A/2+(c-a)cot B/2+(a-b)cot C/2 =0

In a triangle ABC, prove that (a) cos(A + B) + cos C = 0 (b) tan( (A+B)/2)= cot(C/ 2)

In any DeltaABC , prove that (a+b-c) cot (B/2) = (a-b+c) cot (C/2)

In triangle ABC, if |[1,1,1], [cot (A/2), cot(B/2), cot(C/2)], [tan(B/2)+tan(C/2), tan(C/2)+ tan(A/2), tan(A/2)+ tan(B/2)]| then the triangle must be (A) Equilateral (B) Isoceless (C) Right Angle (D) none of these

In any Delta ABC, prove the following : r_1=rcot(B/2)cot(C/2)