Home
Class 12
MATHS
In a triangle ABC cosA+cosB+cosC<=k then...

In a triangle `ABC cosA+cosB+cosC<=k` then `k=`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in triangle ABC, 2cos A cosB cos Cle(1)/(4) .

If in a triangle A B C ,cosA+2cosB+cosC=2 prove that the sides of the triangle are in AP

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

In a tringle ABC, sin A-cosB=cosC, then angle B, is

In triangle ABC, if cosA+2cosB+cosC=2,t h e na ,b ,c are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

In a triangle ABC, 3sinA + 4cosB = 6 and 4sinB + 3cosA = 1. Find the measure of angle C.

If in a Delta ABC, cosA+ cosB + cosC =3/2. Prove that DeltaABC is an equilateral triangle.

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC , cosA=(sinB)/(2sinC) then the triangle ABC , is

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2