Home
Class 12
MATHS
Prove that sinα+sin(α+ 3 2π ​ )+sin(α...

Prove that sinα+sin(α+ 3 2π ​ )+sin(α+ 3 4π ​ )=0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin4A=4sinAcos^3A-4sin^3A

Prove that sin 3 A = 4 sin A sin (60° - A ) sin (60°+ A).

If 4 cos^(2) A - 3 = 0 and 0^(@) le A le 90^(@), then prove that : sin 3 A = 3 sin A - 4 sin^(3) A

Prove that: sin^3A+sin^3((2pi)/3+A)+sin^3((4pi)/3+A)=-3/4sin3Adot

Prove that: \ (sin3A+sin A)sin A+(cos3A-cos A)cos A=0

Prove that : (sin3A+sin A)sin A+(cos3A-cos A)cos A=0

Prove that : "sin"Asin(60^0-A)sin(60^0+A)=1/4sin3A

Prove that the general solution of sin θ= sin α, is given by : theta=npi+(-1)^nalpha,n in Zdot

Prove that: \ sin3A+sin2A-sin A=4sin A cos (A/2)cos((3A)/2)

Prove that: (sin3A cos4A-sin Acos2A)/(sin4A sin A+cos6A cos A)=tan2A