Home
Class 12
MATHS
The maximum value of (1+cosx)sinx in int...

The maximum value of `(1+cosx)sinx` in interval `0lexle pi/2` is for (A) `x =pi/2` (B) `x= pi/6` (C) `x=0` (D) `x= pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)/(2)) is

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The solution(s) of the equation cos2x sin6x=cos3x sin5x in the interval [0,pi] is/are pi/6 (b) pi/2 (c) (2pi)/3 (d) (5pi)/6

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

The maximum value of sin(x+pi/5)+cos(x+pi/5), where x in (0, pi/2), is attained at

The least value of the function f(x)= 2cosx +x in the closed interval [0,pi/2] is: A. 2 B. pi/6 + sqrt3 C. pi/2 D. The least value does not exist

The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(pi/2-y) is zero if (A) x=0 (B) y=0 (C) x=y (D) npi+y-pi/4(n in Z)

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2