Home
Class 12
MATHS
Letf(x)=max{tanx,cotx] then number of ro...

Let`f(x)=max{tanx,cotx]` then number of roots of equation the interval `[0,2pi]` satisfying `f(x)=1/sqrt 3` is (A) 2(B) 4(C) 0 (D) infinte

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= max{tanx, cotx} . Then number of roots of the equation f(x)= 1/sqrt(3) in (0,2pi) is (A) 2 (B) 4 (C) 0 (D) infinite

Let f(x)=max{tanx, cotx} . Then the number of roots of the equation f(x)=(1)/(2)" in "(0, 2pi) is

The number of values of x in the in interval [0,5pi] satisfying the equation 3sin^2x-7sinx+2=0 is 0 (b) 5 (c) 6 (d) 10

The number of real roots of the equation x^2tanx=1 lies between 0 and 2pi is/are (A) 1 (B) 2 (C) 3 (D) 4

The number of values of x in the interval 0,5pi satisfying the equation 3sin^2x-7sinx+2=0 is 0 (b) 5 (c) 6 (d) 10

The number of roots of the equation xsinx=1,x in [-2pi,0)uu(0,2pi] is (a) 2 (b) 3 (c) 4 (d) 0

The number of solutions of the equation tanx+secx=2cosx lying in the interval [0,2pi] is 0 (b) 1 (c) 2 (d) 3

Let f be a function such that f(x).f\'(-x)=f(-x).f\'(x) for all x and f(0)=3 . Now answer the question:Number of roots of equation f(x)=0 in interval [-2,2] is (A) 0 (B) 2 (C) 4 (D) 1

The number of values of x int [-2pi, 2pi] satisfying tanx + cotx = 2" cosec x" is

Number of solutions in the interval [0,2pi] satisfying the equation 8sin x=(sqrt(3))/(cos x)+1/(sin x) are a. 5 b. 6 c. 7 d. 8