Home
Class 12
MATHS
If sinx+cosx=sqrt(y+1/y) for x in [0,pi]...

If `sinx+cosx=sqrt(y+1/y)` for `x in [0,pi]` , then (a) `x=pi/4` (b) `y=0` (c) `y=1` (d) `x=(3pi)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinx+cosx=sqrt(y+1/y) for x in [0,pi] , then x=pi/4 (b) y=0 y=1 (d) x=(3pi)/4

If sinx+cosx=sqrt(y+1/y), y gt 0, x in[0,pi] , then find the least value of x satisfying the given conditions.

If x^2-4x+5-siny=0, yepsilon [0,2pi] then (A) x=1,y=0 (B) x=1,y=pi/2 (C) x=2,y=0 (D) x=2,y=pi/2

If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy the equation tan^2theta-4tantheta+1=0, then x=pi/6 (b) y=pi/4 (c) y=pi/6 (d) y=pi/4

If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy the equation tan^2theta-4tantheta+1=0, then x=pi/6 (b) y=pi/4 (c) y=pi/6 (d) y=pi/4

f(x)=sin+sqrt(3)cosx is maximum when x= pi/3 (b) pi/4 (c) pi/6 (d) 0

The equation of the normal to the curve x=a\ cos^3theta,\ \ y=a\ sin^3theta at the point theta=pi//4 is (a) x=0 (b) y=0 (c) x=y (d) x+y=a

If (sinx)(cosy)=1/2, then (d^2y)/(dx^2) at (pi/4,pi/4) is (a) -4 (b) -2 (c) -6 (d) 0

If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

The angle of intersection between the curves x^(2) = 4(y +1) and x^(2) =-4 (y+1) is (a) pi/6 (b) pi/4 (c) 0 (d) pi/2