Home
Class 12
MATHS
If sin^4 x + cos^4 x = 7/2 sinx.cosx, th...

If `sin^4 x + cos^4 x = 7/2 sinx.cosx,` then the value of x equals to

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^4 x+cos^4x=sinx.cosx, then x is equal to (A) npi, nepsilon I (B) (6n=1) pi/6, n epsilon I (C) (4n+1) pi/4, n epsilon I (D) none of these

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If g(x)=(4cos^4x-2cos2x-1/2cos4x-x^7)^(1/7) then the value of g(g(100)) is equal to

If y= (sinx+cosx)+(sin4x+cos4x)^(2) , then :

Solve the equation sin^(4)x + cos^(4)x =7/2 sinx.cosx.

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

If A=[{:(cosx,-sin x),(sinx, cosx):}] and A+A'=I_(2) , then the general value of x is

If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to

If 3cosx + 2cos3x=cosy , 3sinx + 2sin3x =siny , then cos2x equals

If 0 lt x lt 5/4 and cosx+sinx=5/4 then the value of 16(cosx-sinx)^2 is