Home
Class 12
MATHS
cosα+cosβ= 3/2 ​ and sinα+sinβ= 1/2​ and...

`cosα+cosβ= 3/2` ​ and `sinα+sinβ= 1/2`​ and θ is the arithmetic mean of α and β, then `sin2θ+cos2θ` is equal to Yes No

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosα+cosβ= 3/2 ​ and sinα+sinβ= 1/2 ​ and θ is the arithmetic mean of α and β, then sin2θ+cos2θ is equal to

If cosα+cosβ= 3/2 ​ and sinα+sinβ= 1/2 ​ and θ is the arithmetic mean of α and β, then sin2θ+cos2θ is equal to

tan θ.sin^2 θ=

if cosecθ−cotθ= 1/2 , 0<θ< π/2 then cosθ is equal to

sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

If sinθ= a/√(a^2+b^2) , 0<θ<90 , find the values of cosθ and tanθ.

If θ is an acute angle and tanθ+cotθ=2 , find the value of tan^7θ+cot ^7θ.

The values of θ lying between 0 and π/2 and satisfying the equation ∣ 1+sin ^2θ sin^2θ sin^2θ cos^2θ 1+cos^2θ cos^2θ 4sin4θ 4sin4θ 1+4sin4θ ∣ =0 are

If tanθ= 3/4 then find the value of cos^2θ−sin^2θ ?

If 32tan ^8 θ=2cos^2 α−3cosα and 3cos2θ=1 then the general value of α is