Home
Class 12
MATHS
Find all values of theta in the interva...

Find all values of theta in the interval `(-pi/2,pi/2)` satisfying the equation `(1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^tan2θ =0

The number of values of theta in the interval (-pi/2,pi/2) satisfying the equation (sqrt(3))^(sec^2theta)=tan^4theta+2tan^2theta is 2 (b) 4 (c) 0 (d) 1

Solve the equation (1-tantheta)(1+sin2theta)=1+tantheta

Prove: ((1+cot^2theta)tantheta)/(sec^2theta)=cottheta

Solve the equation: tantheta+tan2theta+tanthetatan2theta=1

(tantheta+2)(2 tantheta+1) = 5 tantheta+ sec^(2)theta

The possible value of theta in [-pi, pi] satisfying the equation 2(costheta + cos 2theta)+ (1+2costheta)sin 2theta = 2sintheta are

If the sum of all values of theta , 0 le theta le 2 pi satisfying the equation (8 cos 4 theta - 3) ( cot theta + tan theta -2 ) ( cot theta + tan theta + 2) = 12 is k pi , then k is equal to :

The number of values of theta in the interval [-pi/2,pi/2] and theta!=(npi)/5 is where n=0,+-1,+-2 and tantheta=cot(5theta) and sin(2theta)=cos(4theta) is

Prove (tantheta+2)(2tantheta+1)=5tantheta+2sec^2theta.