Home
Class 12
MATHS
Show that :2tan^(-1)x+sin^(-1)(2x)/(1+x^...

Show that :`2tan^(-1)x+sin^(-1)(2x)/(1+x^2)` is constant for `xgeq1,` find that constant.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

sin (tan ^(-1)2x)

Solve tan^(-1) x + sin^(-1) x = tan^(-1) 2x

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

Show that '(1-cos 2x + sin x)/(sin 2x + cos x) = tan x'

Evaluate: int(sin(tan^(-1)x)/(1+x^2)dx )

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

If sin^(-1)(2x)/(1+x^2)=tan^(-1)(2x)/(1-x^2) , then find the value of xdot

Prove 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .