Home
Class 12
MATHS
If x1, x2, x3 and x4 are the roots of th...

If `x_1, x_2, x_3 and x_4` are the roots of the equations `x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0,` prove that `tan^(-1)x_1+tan^(-1)x_2+tan^(-1)x_3+tan^(-1)x_4=(pi/2)-beta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_1,x_2, x_3, x_4 are the roots of the equation x^4-x^3 sin2 beta+ x^2.cos2 beta-xcos beta-sin beta=0 , then tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4 is equal to

If tan theta_1,tantheta_2,tan theta_3,tan theta_4 are the roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 then prove that tan(theta_1+theta_2+theta_3+theta_4)=cot beta

If tan theta_1,tantheta_2,tan theta_3,tan theta_4 are the roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 then prove that tan(theta_1+theta_2+theta_3+theta_4)=cot beta

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4