Home
Class 12
MATHS
If cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y...

If `cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y+z= 3/2, ` then prove that `x=y=z`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cosx + cosy + cosz = 0 and sinx + siny + sinz =0 , then show that cos (x-y) + cos(y - z) + cos(z - x) = - 3/2.

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal to

If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal to

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cos e c^(-1)x+cos e c^(-1)y+cos e c^(-1)z=-(3pi)/2, find the value of x/y+y/z+z/xdot

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+x y z=0 x^2+y^2+z^2+2x y z=0 x^2+y^2+z^2+x y z=1 x^2+y^2+z^2+2x y z=1