Home
Class 12
MATHS
If sin^(-1) x = sin^(-1) y + sin^(-1) z ...

If `sin^(-1) x = sin^(-1) y + sin^(-1) z = pi " , prove that " x^(4) + y^(4) + z^(4) + 4x^(2) y^(2) z^(2) = 2 ( x^(2) y^(2) + y^(2) z^(2) + z^(2) x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , show that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

if, sin^-1x + sin^-1y + sin^-1z =pi then prove that xsqrt(1-x^2) + ysqrt(1-y^2) + zsqrt(1-z^2) =2xyz.

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2