Home
Class 12
MATHS
The value of sin(sin^-1 (1/2)+ cos ^-1 (...

The value of `sin(sin^-1 (1/2)+ cos ^-1 (1/3))` is equal to (A) `((sqrt(3)+sqrt(8))/6)` (B) `((1+2sqrt(6))/6)` (C) `- ((1+2sqrt(6))/6)` (D) 0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^-1 (sqrt(3)/2)+ sin^-1 (1/sqrt(2)) is equal to (A) sin^-1 ((sqrt(3+1))/(2sqrt(2))) (B) pi-sin^-1 ((sqrt(3+1))/(2sqrt(2))) (C) pi+sin^-1 ((sqrt(3+1))/(2sqrt(2))) (D) none of these

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

If sin^-1(1/3)+sin^-1 (2/3)= sin^-1 x then x is equal to (A) (4+sqrt(5)/9 (B) (4sqrt(2)+sqrt(5)/9 (C) (sqrt(3)+1)/6 (D) 1

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

cos(sin^-1 (3/5)+ cot^-1(3/2)) = 6/(5sqrt13)

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]

(sqrt(-2))(sqrt(-3)) is equal to A. sqrt(6) B. -sqrt(6) C. isqrt(6) D. none of these

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)