Home
Class 12
MATHS
Prove that: sin^-1 (3/5) +cos^-1 (12/13)...

Prove that: `sin^-1 (3/5) +cos^-1 (12/13)+cot^-1 (56/33)=pi/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^-1(3/5)-cos^-1(12/13)=sin^-1(16/65)

Prove that cos^(-1) (3/5)+cos^(-1) (12/13) +cos^(-1)(63/65)=pi/2

Prove that: cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)

Show that sin^-1 (3/5)+cos^-1(12/13)=cos^-1(33/65)=sin^-1(56/65)

Prove that cos^(-1)4/5 + cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that cos^(-1)(4/5) + cos^(-1)((12)/(13))=cos^(-1)(33/65)

Prove that: sin^(-1) (12/13)+cos^(-1) (4/5)+tan^(-1) (63/16)=pi

Prove that: cos^(-1)4/5+cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that cos^(-1)4/5cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that sin^(-1)(4/5)+tan^(-1)(5/12)+cos^(-1)(63/65)=pi/2