Home
Class 12
MATHS
Prove that: (alpha^3)/2cos e c^2(1/2tan^...

Prove that: `(alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec^2(1/2tan^(-1)beta/alpha)=(alpha+beta)(a^2+beta^2)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (alpha^3)/2cos e c^2(1/2tan^(-1)(alpha/beta))+(beta^3)/2s e c^2(1/2tan^(-1)(beta/alpha))=(alpha+beta)(alpha^2+beta^2) .

The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec^2(1/2tan^(-1)(beta/alpha))i se q u a lto (alpha+beta)(alpha^2+beta^2) (b) (alpha+beta)(alpha^2-beta^2) (alpha+beta)(alpha^2+beta^2) (d) none of these

Prove that: tan^(-1){(cos2alphasec2beta+cos2betasec2alpha)/2}=tan^(-1){tan^2(alpha+beta)tan^2(alpha-beta)}+tan^(-1)1

Prove that : tan^(-1){(cos2\ alphasec2\ beta+cos2betasec2alpha)/2}=tan^(-1){t a n^2(alpha+beta)t a n^2(alpha-beta)}+tan^(-1)1

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If 2 tan (alpha/2)=tan (beta/2), prove that cos alpha=(3+5 cos beta)/(5+3 cos beta).

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then