Home
Class 12
MATHS
Solve: sin^-1 (x)+ sin (sqrt(1-x^2))=...

Solve: `sin^-1 (x)+ sin (sqrt(1-x^2))= `

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1)x > -1

(sin^(-1)x)/(sqrt(1-x^(2))

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

If sin^-1x + sin^-1(1-x) = sin^-1sqrt[1-x^2] ,then x is equal to

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)