Home
Class 12
MATHS
The value of sin^-1 (sqrt(3)/2)+ sin^-1 ...

The value of `sin^-1 (sqrt(3)/2)+ sin^-1 (1/sqrt(2))` is equal to (A) ` sin^-1 ((sqrt(3+1))/(2sqrt(2)))` (B) ` pi-sin^-1 ((sqrt(3+1))/(2sqrt(2)))` (C) ` pi+sin^-1 ((sqrt(3+1))/(2sqrt(2)))` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

find the value of sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2)

sin^(-1)(1/2)-2sin^(-1)(1/(sqrt(2)))

The value of sin(sin^-1 (1/2)+ cos ^-1 (1/3)) is equal to (A) ((sqrt(3)+sqrt(8))/6) (B) ((1+2sqrt(6))/6) (C) - ((1+2sqrt(6))/6) (D) 0

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

1. sin^(-1)((1)/(sqrt(2))) 2. cos^(-1)((sqrt(3))/(2))

The value of intsqrt(1+secx)dx is equal to (A) 2sin^-1(sqrt(2)sin(x/2))+c (B) 2cos^-1(sqrt(2)sin(x/2))+c (C) 2sin^-1(sqrt(2)cos(x/2))+c (D) none of these

Simplified value of sin [ (pi)/(2) - sin^(-1) (- (sqrt3)/(2)) ] is :

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) pi (B) -pi/2 (C) 0 (D) 2sqrt(3)

Find the value of : sin^(-1) (sqrt(3)/2)

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is