Home
Class 12
MATHS
sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x is tr...

`sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x` is true if `x in [0,\ 1]\ ` b. `[-1/(sqrt(2)),1/(sqrt(2))]` c. `[-1/2,1/2]` d. `[-(sqrt(3))/2,(sqrt(3))/2]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(2xsqrt(1-x^2))w i t hr e s p e c ttox ,if -1/(sqrt(2)) < x < 1/(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if -1/(sqrt(2))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),sin^(-1)alpha are the angles of a triangle is (-1)/(sqrt(2)) (b) 1/2 (c) 1/(sqrt(3)) (d) 1/(sqrt(2))

The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),sin^(-1)alpha are the angles of a triangle is (-1)/(sqrt(2)) (b) 1/2 (c) 1/(sqrt(3)) (d) 1/(sqrt(2))