Home
Class 12
MATHS
Solutions set of [sin^(-1)x] gt [cos^(-1...

Solutions set of `[sin^(-1)x] gt [cos^(-1)x]`, where[.] denotes the greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution set of [sin^-1 x]gt [cos^-1 x] . where [*] denotes greatest integer function

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Find number of solutions for equation [sin^(-1)x]=x-[x] , where [.] denotes the greatest integer function.

STATEMENT -1 : If [sin^(-1)x] gt [cos^(-1)x] ,where [] represents the greatest integer function, then x in [sin1,1] is and STATEMENT -2 : cos^(-1)(cosx)=x,x in [-1,1]

Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0 , where [.] denotes the greatest integer function, is satisfied by

The number of solution (s) of equation sin sin^(-1)([x])+cos^(-1)cosx=1 (where denotes the greatest integer function) is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)