Home
Class 12
MATHS
If tan^-1 x+tan^-1 2x+tan^-1 3x=pi, then...

If `tan^-1 x+tan^-1 2x+tan^-1 3x=pi,` then (A) `x=0` (B) `x=1` (C) `x=-1` (D) `xepsilonphi`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

If tan^(-1)3+tan^(-1)x=tan^(-1)8 , then x= (a) 5 (b) 1//5 (c) 5//14 (d) 14//5

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve 3 tan^(-1) x+cot^(-1)x=pi . a) 0 b) 1 c) -1 d) 1/2

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x