Home
Class 12
MATHS
Prove that : tan(2tan^(- 1)\ 1/5-pi/4)+7...

Prove that : `tan(2tan^(- 1)\ 1/5-pi/4)+7/17=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

prove that 2tan^-1 1/3+tan^-1 1/7=pi/4

Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0, -pi/2 if x<0

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0-pi/2,ifx<0