Home
Class 12
MATHS
If 0ltxlt1, then "tan"^(-1)(sqrt(1-x^(2)...

If `0ltxlt1`, then `"tan"^(-1)(sqrt(1-x^(2)))/(1+x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0< x< 1 ,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

If 0< x< 1 ,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

y=tan^(-1)(x/(1+sqrt(1-x^2)))

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'(1) is equal to

If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

tan^-1 [(1)/(sqrt(x^2-1))]

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

Lt_(x to 0)(a^(x)-1)/(sqrt(1+x)-1) is equal to

solve Tan^-1((sqrt(1+x^2)+1)/(x))