Home
Class 12
MATHS
Let alpha = tan^-1 (1/2)+tan^-1(1/3),bet...

`Let alpha = tan^-1 (1/2)+tan^-1(1/3)`,`beta=cos^-1(2/3)+cos^-1(sqrt5/3)`, `gamma=sin^-1(sin((2pi)/3))+1/2cos^-1(cos((2pi)/3))`
then `sincot^-1 tancos^-1 (sin gamma)` is equal to
(A) `2singamma` (B) `sin(gamma/2)` (C) `1/2 sin gamma` (D) `cosgamma`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha = tan^-1 (1/2)+tan^-1(1/3) , beta=cos^-1(2/3)+cos^-1(sqrt5/3) , gamma=sin^-1(sin((2pi)/3))+1/2cos^-1(cos((2pi)/3)) The value of cos(alpha+beta+gamma) is equal to (A) cos((5pi)/12) (B) cos ((7pi)/12) (C) -cos(pi/12) (D) -cos ((7pi)/12)

Let alpha = tan^-1 (1/2)+tan^-1(1/3) , beta=cos^-1(2/3)+cos^-1(sqrt5/3) , gamma=sin^-1(sin((2pi)/3))+1/2cos^-1(cos((2pi)/3)) then cosalpha+cosbeta+cosgamma is equal to (A) (sqrt(2)-1)/2 (B) (sqrt(2)+1)/2 (C) (sqrt(2)+sqrt(3))/2 (D) ((sqrt(3)-sqrt(2))/2)

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

If x_1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x_2=sin^(-1)(3/5)+sin^(-1)((2sqrt2)/3) , then

Write the principal value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3))

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

Evaluate each of the following: sin^(-1)(sin(2pi)/3) (ii) cos^(-1)(cos(7pi)/6) (iii) tan^(-1)(tan(3pi)/4)