Home
Class 12
MATHS
Let cos^-1(x/a)+cos^-1(y/b)=alpha Given ...

Let `cos^-1(x/a)+cos^-1(y/b)=alpha` Given equation represents and ellipse if (A) `alpha=0` (B) `alpha=pi/4` (C) `alpha=pi/2` (D) `alpha=pi`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify : "cosec "alpha=1+cot^(2)alpha" if "alpha=(pi)/(3) .

The value of expression (tan alpha+sin alpha)/(2"cos"^(2)(alpha)/(2)) for alpha=(pi)/(4) is :

If 0 < alpha < pi/ 6 then alpha(cosec alpha) is

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

(sqrt2-sinalpha-cosalpha)/(sinalpha-cosalpha) is equal to (a) sec(alpha/2-pi/8) (b) cos(pi/8-alpha/2) (c) tan(alpha/2-pi/8) (d) cot(alpha/2-pi/2)

If int_0^1tan^(-1)xdx=alpha,t h e nint_0^(pi/4)tan^(-1)((2cos^2theta)/(2-sin2theta))sec^2thetadtheta is equal to: alpha (b) alpha/2 (c) 3alpha (d) 2alpha

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)