Home
Class 12
MATHS
Find the value of "cos"(2cos^(-1)x+sin^(...

Find the value of `"cos"(2cos^(-1)x+sin^(-1)x)` at `x=1/5,` where `0lt=pi` and `-pi/2lt=sin^(-1)xlt=pi/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to a) pi/2 (b) -pi (c) pi (d) -pi/2

Find the maximum and minimum values of (sin^(-1)x)^3+(cos^(-1)x)^3, where -1lt=xlt=1.

Find the maximum and minimum values of (sin^(-1)x)^3+(cos^(-1)x)^3, where -1lt=xlt=1.

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Show that 5xlt=8sinx-sin2xlt=6xfor0lt=xlt=pi/3dot

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Solve the equation sqrt(|sin^(-1)|"cos"||+|cos^1|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot