Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x)=sqrt(sin^(-1)(2x)+pi/6)` for real-valued `x` is `[-1/4,1/2]` (b) `[-1/2,1/2]` (c) `(-1/2,1/9)` (d) `[-1/4,1/4]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is (a) [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of definition of the function f(x)=sin^(-1)((4)/(3+2 cos x)) , is

The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

The domain of definition of the function f(x)=sin^(-1)((x-3)/(2))-log_(10)(4-x) , is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is

The domain of the function f(x)= sqrt(sin^(-1)x-(pi)/(4))+log(1-x) is :

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

The domain of the function f(x)=sqrt(1/((x|-1)cos^(- 1)(2x+1)tan3x)) is

Find the domain of following function: f(x)=sqrt(1-x)-"sin^(-1)((2x-1)/3)