Home
Class 12
MATHS
Sum the series tan^-1 (x/(1+1*2x^2))+tan...

Sum the series `tan^-1 (x/(1+1*2x^2))+tan^-1 (x/(1+2*3x^2))+…+tan^-1 (x/(1+n*(n+1)x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum tan^-1 (x/ (1+1.2x^2))+tan^-1 (x/(1+2.3x^2))+…+tan^-1 (x/(1+n(n+1)x^2)) xgt0

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13)) ......upto n.

Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13)) ......upto n.

tan^-1 (x-1)/(x-2) + tan^-1 (x+1)/(x+2)=pi/4. find X

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)