Home
Class 12
MATHS
Find the sum of the series tan^-1(1/2)+...

Find the sum of the series `tan^-1(1/2)+tan^-1(1/2)+tan^-1(1/18)+tan^-1(1/32)+............` to n terms

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum series: tan^-1 (1/3)+tan^-1 (1/7)+tan^-1(1/13)+…to oo

Find the sum series: tan^-1 (1/3)+tan^-1 (1/7)+tan^-1(1/13)+…to oo

Find the sum of the series : tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^(n-1))/(1+2^(2n-1)))+...... oo

Find the sum of the series tanx +2tan2x+2^2tan2^2 x+…+ 2^(n-1)tan2^(n-1)x

The value of tan^-1(1/3)+tan^-1(2/9)+tan^-1(4/33)+tan^-1(8/129)+....n terms is:

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

show that tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to