Home
Class 12
MATHS
Sum the series : tan^(-1)((4)/(1+3*4))...

Sum the series :
`tan^(-1)((4)/(1+3*4))+tan^(-1)((6)/(1+8*9))+tan^(-1)((8)/(1+15*16))+……oo` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

tan^(-1)((1)/(1+2))+tan^(-1)((1)/(1+6))+tan^(-1)(k)=tan^(-1)4 -(pi)/(4) then k is

Sum the series tan^-1 (x/(1+1*2x^2))+tan^-1 (x/(1+2*3x^2))+…+tan^-1 (x/(1+n*(n+1)x^2))

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

Prove the following: 2\ tan^(-1)(1/5)+tan^(-1)(1/8)= tan^(-1)(4/7)

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot