Home
Class 12
MATHS
If the sum of first 16 terms of the seri...

If the sum of first 16 terms of the series `s=cot^(-1)(2^2+1/2)+cot^(-1)(2^3+1/(2^2))+cot^(-1)(2^4+1/(2^3))+` up to terms is `cot^(-1)((1+2^n)/(2(2^(16)-1)))` , then find the value of `ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2^3+1/(2^2))+cot^(- 1)(2^4+1/(2^3))+... is

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

If sum_(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kpi then find the value of k

Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4

if sinA=1/2 , then the value of cot A

Find the sum to n terms of the series : 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+ ….

Find the sum of n terms \ of the series: 1/(1. 2)+1/(2. 3)+1/(3. 4)+dot+1/(ndot(n+1))

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4