Home
Class 12
MATHS
Period of sin^2 theta is(A) pi^2 (B) pi ...

Period of `sin^2 theta` is(A) `pi^2` (B) `pi` (C) `2pi` (D) `pi/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(2pi) e^(sin^2nx) tannxdx= (A) 1 (B) pi (C) 2pi (D) 0

If lim_(x->0)[1+x1n(1+b^2)]^(1/x)=2bsin^2theta,b >0 ,where theta in (-pi,pi], then the value of theta is (a) +-pi/4 (b) +-pi/3 (c) +-pi/6 (d) +-pi/2

The value of int_0^(sin^2theta) sin^-1 sqrt(phi) d phi + int_0^(cos^2theta) cos^-1 sqrt(phi) d phi is equal to (A) pi (B) pi/2 (C) pi/3 (D) pi/4

If (costheta+cos2theta)^3=cos^3theta+cos^3 2theta, then the least positive value of theta is equal to pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The sum of all the solutions of cottheta=sin2theta(theta!=npi, n integer) , 0lt=thetalt=pi, is (a) (3pi)/2 (b) pi (c) 3 pi/4 (d) 2pi

If theta=sin^(-1){sin (-600^(o) ) } , then one of the possible values of theta is pi/3 (b) pi/2 (c) (2pi)/3 (d) (-2pi)/3

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to a) pi/2 (b) -pi (c) pi (d) -pi/2

If 2|sin2alpha|=|tanbeta+cotbeta|,alpha,beta in (pi/2,pi), then the value of alpha+beta is (a) (3pi)/4 (b) pi (c) (3pi)/2 (d) (5pi)/4