Home
Class 12
MATHS
In triangle A B C ,2a csin(1/2(A-B+C)) i...

In triangle `A B C ,2a csin(1/2(A-B+C))` is equal to `(a) a^2+b^2-c^2` (b) `c^2+a^2-b^2` (c) `b^2-c^2-a^2` (d) `c^2-a^2-b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle A B C ,2a csin(1/2(A-B+C)) is equal to a^2+b^2-c^2 (b) c^2+a^2-b^2 b^2-c^2-a^2 (d) c^2-a^2-b^2

In any A B C , the value of 2a csin((A-B+C)/2) is (a) a^2+b^2-c^2 (b) c^2+a^2-b^2 (c) b^2-c^2-a^2 (d) c^2-a^2-b^2

In a A B C(b csin^2A)/(cos A+cosB cos C) is equal to b^2+C^2 b. b c c. a^2 d. a^2+b c

In a triangle A B C ,\ (a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB is equal to (a^2+b^2-c^2)tanC (b) (a^2+b^2+c^2)tanC (b^2+c^2-a^2)tanC (d) none of these

If D is the mid-point of the side B C of triangle A B C and A D is perpendicular to A C , then 3b^2=a^2-c ^2 (b) 3a^2=b^2 3c^2 b^2=a^2-c^2 (d) a^2+b^2=5c^2

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

If D is the mid-point of the side B C of triangle A B C and A D is perpendicular to A C , then 3b^2=a^2-c (b) 3a^2=b^2 3c^2 b^2=a^2-c^2 (d) a^2+b^2=5c^2

If any triangle A B C , that: (asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)

In any triangle A B C , prove that: ("sin"(B-C))/("sin"(B+C))=(b^2-c^2)/(a^2)

In a triangle A B C , right angled at C ,t a n A+t a n B is equal to a. a+b b. (c^2)/(a b) c. (a^2)/(b c) d. (b^2)/(a c)