Home
Class 12
MATHS
Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi...

Prove: `cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi .

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

If A = 1/1 cot ^(-1) (1/1) + 1/2 cot^(-1) (1/2) + 1/3 cot ^(-1) ( 1/3) " and " B = 1 cot^(-1) ( 1) + 2 cot^(-1) (2) + 3 cot^(-1) (3) " then " |B - A| " is equal to " (api)/b + c/d cot ^(-1) (3) where a,b,c,d in N are in their lowest form , find ( b -a - c - d)

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

Prove that cot(pi/4-2cot^(- 1)3)=7