Home
Class 12
MATHS
If the point (2costheta, 2sintheta), for...

If the point `(2costheta, 2sintheta),` for `theta in (0, 2pi)` lies in the region between the lines `x+y=1 and x-y=2` containing the origin then `theta` lies in (A) `(0, pi/2)cup((3pi)/2, 2pi)` (B) `[0,pi]` (C) `(pi/2, (3pi)/2)` (D) `[pi/4, pi/2]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(sinx)=0, then x lies in (a) (pi/4,pi/2)uu(pi/2,\ pi) (b) (-pi/4,\ 0) (c) (pi,(3pi)/2) (d) null set

Prove that int_(0)^(2pi)e^(costheta)cos(sintheta)d theta=2pi .

For 0 cos^(-1)(sintheta) is true when theta belongs to (a) (pi/4,pi) (b) (pi,(3pi)/2) (c) (pi/4,(3pi)/4) (d) ((3pi)/4,2pi)

The smallest positive root of the equation tanx-x=0 lies in (0,pi/2) (b) (pi/2,pi) (pi,(3pi)/2) (d) ((3pi)/2,2pi)

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

Period of sin^2 theta is(A) pi^2 (B) pi (C) 2pi (D) pi/2

The angle between the tangents to the parabola y^2=4a x at the points where it intersects with the line x-y-a=0 is (a) pi/3 (b) pi/4 (c) pi (d) pi/2

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0 at the origin intersect at an angle theta equal to (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2