Home
Class 12
MATHS
The minimum value of cos theta+sintheta+...

The minimum value of `cos theta+sintheta+ 2/(sin2theta)` for `theta in (0, pi/2) ` is (A) `2+sqrt(2)` (B) 2 (C) `1+sqrt(2)` (D) `2sqrt(2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cos theta sqrt(1-sin^(2)theta)=

cos theta+sqrt(3)sin theta=2

Minimum value of 3 sin theta+4 cos theta in the interval [0, (pi)/(2)] is : (a) -5 (b) 3 (c) 4 (d) (7)/(sqrt(2))

Find the minimum value of 2costheta+1/sin theta+sqrt2tantheta , where theta is acute angle.

The maximum value of =|[1, 1, 1], [1, 1+sintheta,1], [1+costheta,1, 1]| (theta is real) (a) 1/2 (b) (sqrt(3))/2 (c) sqrt(2) (d) -(sqrt(3))/2

The solution of the equation cos^2theta-2costheta=4sintheta-sin2theta where theta in [0,pi] is

The value of sectheta/sqrt(1+tan^2theta)+(cosectheta)/(sqrt(1+cot^2theta))" for "theta in (pi,(3pi)/2) is

The minimum and maximum values of expression y=costheta(sintheta+sqrt(sin^2theta+sin^2alpha))

Solve : sqrt3 sin theta - cos theta = sqrt2.

If tan\ theta/2=(cosec theta-sin theta), then tan^2\ theta/2 may be equal to (A) 2-sqrt(5) (B) (9-4sqrt(5))(2+sqrt(5)) (C) -2+sqrt(5) (D) (9-4sqrt(5))(2-sqrt(5))