Home
Class 12
MATHS
If f(x)|cos(2x)cos(2x)"sin"(2x)-cosxcosx...

If `f(x)|cos(2x)cos(2x)"sin"(2x)-cosxcosx-sinxsinxsinxcosx|,t h e n:` a`f^(prime)(x)=0` at exactly three point in `(-pi,pi)` b`f^(prime)(x)=0` at more than three point in `(-pi,pi)` c`f(x)` attains its maximum at `x=0` d`f(x)` attains its minimum at `x=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|"cos"(x+x^2)"sin"(x+x^2)-"cos"(x+x^2)"sin"(x-x^2)"cos"(x-x^2)sin(x-x^2)sin2x0sin2x^2|,t h e n f(-2)=0 (b) f^(prime)(-1/2)=0 f^(prime)(-1)=-2 (d) f^(0)=4

Statement 1: For f(x)=sinx ,f^(prime)(pi)=f^(prime)(3pi)dot Statement 2: For f(x)=sinx ,f(pi)=f(3pi)dot

If f(x) is continuous function in [0,2pi] and f(0)=f(2 pi ), then prove that there exists a point c in (0,pi) such that f(x)=f(x+pi).

Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

If f^(prime)(x)=asinx+bcosx and f^(prime)(0)=4,f(0)=3,f(pi/2)=5 . Find f(x).

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

In the interval (0,pi//2) the fucntion f(x)= tan^nx+cot^n x attains

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)