Home
Class 12
MATHS
If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1...

If `(cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1`, then prove that
(i) `sin^4A+sin^4B=2 sin^2Asin^2B`
(ii) `(cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 then prove that (cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

If (cos^4 A)/(cos^2 B) + (sin^4 A)/(sin^2 B) =1 , Prove that: sin^4 A+sin^4 B=2 sin^2 A sin^2 B

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

Prove that in a A B C ,sin^2A+sin^2B+sin^2C<=9/4dot

If cosA+cos^2A=1 , then sin^2A+sin^4A=

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

Prove that: sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)

Prove that cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A .

Prove that : 2 sin^(2) A + cos^(4) A = 1 + sin^(4) A

Prove that: sin2x+2sin4x+sin6x=4cos^2xsin4