Home
Class 12
MATHS
Prove that cos^6 theta+ sin^6 theta= 1-3...

Prove that `cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

Prove that (1- cos theta + sin theta)/( 1+cos theta +sin theta) = "tan"(theta)/(2) .

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta

Prove that (costheta)/(1-sin theta)+(1-sin theta)/(cos theta)=2sec theta .

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=

Prove that cos^2 theta cosec theta+sin theta=cosec theta

If sintheta+sin^2theta=1, then prove that cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta-1=0 Given that sintheta=1-sin^2theta=1-sin^2theta=cos^2theta