Home
Class 12
MATHS
If sin^4 A + sin^2 A=1 then prove that 1...

If `sin^4 A + sin^2 A=1` then prove that `1/(tan^4A)+1/(tan^2A)=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^4 A + sin^2 A=1 , prove that: tan^4 A - tan^2 A =1

If A + B = (pi)/(4) , then prove that (1 + tan A) (1 + tan B) = 2

If sin2A= lambda sin 2B prove that (tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)

If sin2A= lambda sin 2B prove that (tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)

If cos A+cosB=1/2 and sin A+ sinB=1/4 , prove that: tan((A+B)/2)=1/2

Prove: sin^2A+1/(1+tan^2A)=1

Prove that (2 tan A) /(1+ tan ^(2) A) = sin 2 A.

If cos A + cos B = (1)/(3) and sin A + sin B = 1/4 prove that tan "" (1)/(2) (A+B) = 3/4.

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4