Home
Class 12
MATHS
If sin^4 A + sin^2 A=1, prove that: tan^...

If `sin^4 A + sin^2 A=1`, prove that: `tan^4 A - tan^2 A =1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^4 A + sin^2 A=1 then prove that 1/(tan^4A)+1/(tan^2A)=1

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

If tan A + sin A = m and tan A - sin A = n, prove that : m^(2) - n^(2) = 4 sqrt (mn)

If cos A + cos B = (1)/(3) and sin A + sin B = 1/4 prove that tan "" (1)/(2) (A+B) = 3/4.

Prove: sec^4A(1-sin^4A)-2tan^2A=1

If cos A+cosB=1/2 and sin A+ sinB=1/4 , prove that: tan((A+B)/2)=1/2

If sin2A= lambda sin 2B prove that (tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)

If sin2A= lambda sin 2B prove that (tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)