Home
Class 12
MATHS
If A and B are acute angles and sinA/sin...

If A and B are acute angles and `sinA/sin B= sqrt2` and `tanA/tanB = sqrt3`, find A and B.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find acute angles A and B when 2 sin (A+ B) = sqrt3 and 2 cos (A-B) = sqrt3

If A and B are acute angles, find (A+B) given sin A = (1)/(sqrt5) , sin B = (1)/(sqrt10)

If A and B are acute angles such that tanA=1/2 , tanB=1/3 and tan(A+B)=(tanA+tan\ B)/(1-tanAtanB) , find A+B .

Find acute angles A and B, if sin(A+B)=cos(A-B)=sqrt(3)/2 .

If A and B are acute angles such that tanA=cotB , then show that A+B =90^(@) .

If tan(A+B)=sqrt(3) and sqrt(3)tan(A-B)=1 , find the angles A and B.

Given that A ,\ B are positive acute angles and sqrt(3)\ sin2A=sin2B\ &\ sqrt(3)sin^2A+sin^2B=(sqrt(3)-1)/2 , then A\ or\ B may take the value(s) (a) 15^0 (b) 30^0 (c) 45^0 (d) 75^0

In an acute angled triangle ABC , the minimum value of tanA tanB tanC is

Find acute angles Aa n dB , if sin(A+2B)=(sqrt(3))/2a n dcos(A+4B)=0,A > Bdot

If tan (A-B) = (1)/(sqrt3) and sin A = (1)/(sqrt2) find the value of B.